satisfy $f(x, y) = C$ is called the level curve of at C, and an entire family of level curves is generated as C varies over a set of numbers. By sketching members of this family in the xy plane, you can obtain a useful representation of the surface $z = f(x, y)$.

For instance, imagine that the surface $z = f(x, y)$ is a "mountain" whose "elevation" at the point (x, y) is given by $f(x, y)$, as shown in Figure 9.5a. The level curve $f(x, y) = C$ lies directly below a path on the mountain where the elevation is always C. To graph the mountain, you can indicate the paths of constant elevation by sketching the family of level curves in the plane and pinning a "flag" to each curve to show the elevation to which it corresponds (Figure 9.5b). This "flat" figure is called a topographical map of the surface $z = f(x, y)$.

EXAMPLE 1.5

Discuss the level curves of the function $f(x, y) = x^2 + y^2$.

Solution

The level curve $f(x, y) = C$ has the equation $x^2 + y^2 = C$. If $C = 0$ the point $(0, 0)$, and if $C > 0$, it is a circle of radius \sqrt{C}. If $C < 0$ no points that satisfy $x^2 + y^2 = C$.

![Image](image-url)
consider the graph of a function $\mathbb{R}^2 \rightarrow \mathbb{R}$, namely, the point $(x, y, f(x, y))$ in \mathbb{R}^3 where (x, y) is in the domain of f. Such a graph is shown in Fig. 24 as a surface lying over a rectangle in three-dimensional space. The intersection of the surface with the vertical plane determined by $y = b$ is a curve satisfying the conditions

$$z = f(x, y), \quad y = b.$$

Consider as a subset of 2-dimensional space the curve...
\(\frac{\partial f}{\partial u} (0, 0, 0) = \frac{1}{2} \).

\(\mathbb{R}^2 \rightarrow \mathbb{R} \) be a function whose graph is a surface in 3-dimentional space, and let \(u \) be a unit vector in \(\mathbb{R}^2 \), i.e., \(|u| = 1 \). Ar

![Diagram of the function's graph and directional derivative](image)

Figure 1

own in Fig. 1. The value of the directional derivative \(\frac{\partial f}{\partial u} \) is by definition
Let \(R^2 \to R \) be a function whose graph is a surface in 3-dimer Euclidean space, and let \(u \) be a unit vector in \(R^2 \), i.e., \(|u| = 1 \). An ex

![Figure 1](image)

is shown in Fig. 1. The value of the directional derivative \(\frac{\partial f}{\partial u} (x, y) \) is by definition

\[
\frac{\partial f}{\partial u} (x) = \lim_{t \to 0} \frac{f(x + tu) - f(x)}{t}.
\]

The distance between the points \(x + tu \) and \(x \) is given by

\[
| (x + tu) - x | = |tu| = |t|.
\]

Hence, the ratio

\[
\frac{f(x + tu) - f(x)}{t}
\]

is the slope of the line through the points \(f(x + tu) \) and \(f(x) \). It that the limit, \((\frac{\partial f}{\partial u})(x) \), of the ratio is the slope of the tangent \((x, f(x)) \) to the curve formed by the intersection of the graph of \(f \) plane that contains \(x \) and \(x + u \), and is parallel to the \(z \)-axis. This