Definition 1. Throughout f, g, k etc will be functions of x (or sometimes h). We write $f = o(k)$, or $f(x) = o(k(x))$, and say “f is little oh of k”, if

\[\forall \epsilon > 0 \exists \delta > 0 \ni \left[|k(x)| \leq \delta \implies |f(x)| \leq \epsilon |k(x)| \right]. \tag{1} \]

Furthermore, we write $f = g + o(k)$ iff $f(x) - g(x) = o(k(x))$.

Note 1: The use of equal signs in this definition is an abuse of notation, but a common one (so it must be useful). The symbol \ni here means “such that”. Above we have been careful to say that $\epsilon, \delta > 0$, but henceforth we just refer to ϵ and δ without explicitly saying they are positive.

Note 2: The most common function k is the identity $k(x) = x$. In this case we write $f(x) = o(x)$ and say that f is little oh of x, or just “f is little oh”.

Note 3: Intuitively $f = o(k)$ means that $\lim_{x \to 0} \frac{|f(x)|}{|k(x)|} = 0$, but we can’t say it that way because $k(x)$ may equal 0, even for all values of x.

Definition 2. We write $f = O(k)$, or $f(x) = O(k(x))$, and say f is big Oh of k, if

\[\exists M, \delta \ni \left[|k(x)| < \delta \implies |f(x)| < M |k(x)| \right]. \tag{2} \]

We write $f = g + O(k)$ iff $f(x) - g(x) = O(k(x))$.

Intuitively $f = O(k)$ means that $|f(x)|/|k(x)|$ is bounded for $k(x)$ small, but we can’t say it that way because $k(x)$ may be 0.

There are even more general definitions of oh and Oh. See the final remark.

Examples:

\[x^2 = o(x) \quad \text{[} f(x) = x^2, \quad k(x) = x, \quad x \in \mathbb{R} \text{]} \]

\[2x + x^2 = O(x) \]

\[\sqrt{x} \neq O(x) \]

\[x^3 = o(x^2). \]

Theorem (The Chain Rule, stated in oh notation). If $f(a) = b$, and

\[f(a + h) - f(a) = f'(a)h + o(h) \]

[where h is the basic variable, $f'(a)$ is the matrix derivative]

and $g(b + k) - g(b) = g'(b)k + o(k)$,

then

\[gf(a + h) - gf(a) = g'(b)f'(a)h + o(h). \]

Proof: Let $k(h) = f(a + h) - f(a)$, so $k(h) = f'(a)h + o(h) = O(h) + o(h) = O(h)$. Then
\[g f(a + h) - g f(a) = g(b + k) - g(b) = g'(b)k + o(k) \]
\[= g'(b)\left(f'(a)h + o(h)\right) + o(k) \]
\[= g'(b)f'(a)h + g'(b)o(h) + o(O(h)) \]
\[= g'(b)f'(a)h + o(h) + o(h) \]
\[= g'(b)f'(a)h + o(h). \]

Assignment. Prove all the oh and Oh facts used in this argument.

Remark: One can also define \(o \) and \(O \) when \(x \) or \(k(x) \) has a limit other than 0. For instance, in discrete math and computer science, one considers \(f(n) \) as \(n \to \infty \). When the limit of interest is not obvious or fixed, one has to be explicit, and say things like “\(f(x) \) is little oh of \(x \) as \(x \to \infty \).”