More Normed Metric Space Problems

Most of these problems are adapted from George Simmons, *Introduction to Topology and Modern Analysis*.

1. Let B be a normed metric space. Let $B_\epsilon(x)$ be the open ball of radius ϵ around x.
 a) Suppose $|y - x| = \delta$. Prove that for every positive $\alpha < \delta + \epsilon$ there is a $z \in B_\epsilon(x)$ such that $|z - y| = \alpha$. Note: This should seem obvious once you draw a picture, but it is not true in all metric spaces. Consider the metric space in which all distinct points have distance 1. Or use the Euclidean metric on \mathbb{R}^2 but let the space consist of a random subset of \mathbb{R}^2.
 b) Prove that in every metric space, with x, y as above, there exists no $z \in B_\epsilon(x)$ such that $|z - y| \geq \delta + \epsilon$. (Here we use $|a - b|$ as the metric, though in general the bar notation is reserved for norms.)

2. Let N be a normed linear space (that contains more than the point zero). Prove that N is a Banach space \iff its unit sphere is a complete set (every Cauchy sequence within the set converges to a point in the set)

3. Let M, N be vector spaces with norms $\| \cdot \|_M$ and $\| \cdot \|_N$. Define $M \oplus N$, the direct sum of M, N, as $\{(x, y) : x \in M, y \in N\}$, with addition and scalar multiplication defined coordinatewise. So far, this is just the standard linear algebra direct sum. Now define a norm on $M \oplus N$ by
 \[\|(x, y)\| = \|x\|_M + \|y\|_N. \] (1)
 Prove: (1) really is a norm, and if M, N are Banach spaces, so is $M \oplus N$.

4. Let M, N be normed linear spaces, and let $L(M, N)$ be the set of all continuous linear transformations T from M to N, with addition and scalar multiplication of transformations defined as usual. As we know from Kolmogorov, a norm can be put on $L(M, N)$ by $\|T\| = \sup\{|T(x)| : |x| = 1\}$.
 a) Show that this norm really is a norm.
 b) Show: If N is a Banach space, so is $L(M, N)$.

5. Let B be a Banach space. Prove: B is reflexive $\iff B^*$ is reflexive.