E28 - Notes for Week of Nov. 4th

Noah Weinthal

— November 4th: Probability Continued, and the Bayes Filter. —

MATLAB Demo

Given a robot that has a door detector, we’re trying to get the robot to move through the world. That said, this is a probabilistic model, so we’re not guaranteed to sense a door even if we’re at a door. This model will be available online.

Probabilistic Filters

A Probabilistic Filter combines the probabilities of robot motion and sensing to produce a distribution over states, indicating probability of a robot being at a particular location. We formulate this based off of a **Motion Distribution** and a **Sensor Distribution** (sometimes called a measurement distribution). The motion distribution can be formally written as

\[P(x'|x, u) \]

and the sensor distribution as

\[P(z|x) \]

The motion distribution consists of the probability of reaching next state \(x' \) given that the robot with some applied constant control \(u \) is in state \(x \) and the sensor distribution is the probability of observing sensor reading \(z \) given the robot is in state \(x \).

The Bayes Filter

Let \(bel(x) \) be the belief that robot is in state \(x \). To construct a Bayes Filter, apply motion model by executing control \(u \) and set for each \(x' \):

\[\bar{bel}(x') = \sum_x bel(x) \cdot P(x'|x, u) \] (1)

and apply sensor model by observing measurement \(z \) and set for each \(x \)

\[bel(x) = \eta P(z|x) \bar{bel}(x) \] (2)
where

$$\eta = \frac{1}{\sum_{x'} P(z|x') \text{bel}(x')}$$

$\text{bel}(x)$ is intuitively just $P(x)$, but there is a subtle difference in formality. Actually, $\text{bel}(x)$ is $P(x_{t+1}|u_1...u_t, z_1...z_t)$, or in plainer terms the probability that we are in a particular state given all the controls and sensor observations up to that point in time. Note that we don’t know explicitly what $P(z)$ is from this. η normalizes this to make sure we end up with a proper probability distribution (i.e. everything sums to one).

Runtime considerations

The spaces of all possible states can get rather large, depending on the resolution and size of the mapped space. For n states and m sensor readings, (1) is $O(n^2)$ and (2) is $O(n)$.

— November 6th: Bayes Filter Continued, and More Probability —

Example motion and measurement models

The motion model for the MATLAB example was

$$P(x'|x, u) = \begin{cases}
12.5\% & : \text{if } \pm 1 \text{ off} \\
75\% & : \text{otherwise}
\end{cases}$$

while the measurement model was (less compactly):

$$P(z = 1|\text{door}) = 95\%$$

$$P(z = 0|\text{door}) = 5\%$$

$$P(z = 1|\text{no door}) = 10\%$$

$$P(z = 0|\text{no door}) = 90\%$$

More on probability

Random sampling

Suppose we’re given a function `rand()` which returns an integer from 0 to a large RAND_MAX with equal probability. We want to use `rand` to implement `frand()` which returns a floating point number uniformly distributed in [0,1].

```python
def frand():
    return float(rand())/RAND_MAX
```

2
which returns 1 of possible numbers between 0 and 1. Suppose we want to implement an unfair coin flip such that

\[
P(\text{heads}) = 0.7 \\
P(\text{tails}) = 0.3
\]

We can use \texttt{frand()} to implement:

```python
def unfair_flip():
    if frand() > 0.3:
        return 'HEADS'
    else:
        return 'TAILS'
```

we can do the same with an unfair die for the following distribution:

```
def unfair_dice_roll():
    p = frand()
    if p < 1.0/21:
        return 1
    elif p < 3.0/21:
        return 2
    elif p < 6.0/21:
    ```
Which is essentially searching the sorted list \([1/21, 3/21, \ldots, 21/21]\) for the smallest element greater than or equal to \(P\).

Discrete vs. Continuous Probability

Discrete has:

\[
x \in X \\
0 \leq P(x) \leq 1 \\
\sum P(x) = 1
\]

while Continuous has:

\[
x \in \mathbb{R} \\
P(x) \geq 0 \\
\int_{-\infty}^{\infty} P(x)dx = 1
\]

A continuous distribution is not the same as a discrete probability, despite similar notation. We’ve mostly been dealing with the discrete case up until here. To find the probability that \(x \in [a, b]\) we have to integrate the distribution along that interval.