Robot Races on Friday Nov 14 from 3-5 p.m.
- The take home exam will be pushed back 1 week, now due after Robot Race.
- Check out Robot probability on website (Bayes Filter)

A Probabilistic Filter combines probabilities of Robot Motion and Sensing to produce a distribution over states indicating probability of robot being at a particular location.

Random Variables: State \(x \).

Sensor measurement \(z \)

Control \(u \) is a constant (known)

Two underlying (known) distributions:

- Motion Model \(p(x'|x,u) \)
 - Probability of reaching next state \(x' \) given that robot applied control \(u \) in state \(x \)
- Measurement Model \(p(z|x) \)
 - Probability of observing sensor reading \(z \) given robot in state \(x \)
 - Typically encodes knowledge of world or map.

The Bayes Filter

Let \(\text{Bel}(x) \) represent belief robot is at state \(x \).

1. Apply motion model: Execute control \(u \) and set for each \(x' \):

\[
\text{Bel}(x') = \sum_{x} \text{Bel}(x) \cdot p(x' | x, u)
\]

2. Apply sensor model: Observe measurement \(z \) and set for each \(x \):

\[
\text{Bel}(x) = \frac{\Pi p(z | x) \cdot \text{Bel}(x)}{\sum_{x'} p(z | x') \cdot \text{Bel}(x')}
\]

(Arte to make sure \(\text{Bel}(x) \) sums to 1.)
Bel(x) is basically p(x) - actually p(x_{t+1} | v_{1:t}, z_{t:t})
Bel(x) is p(x_{t+1} | v_{1:t}, z_{1:t-1})
P(x') = \sum_x P(x' | x) P(x) (Theorem of total probability)
P(x | z) = \frac{P(z | x) P(x)}{P(z)} = \sum_x P(z | x') P(x')
- P(x') is Bel(x)
- P(z) = ??

Runtime stuff
N states
M sensor readings

O(N^2) \quad Bel(x') = \sum_x Bel(x) \cdot p(x' | x, v)
O(N) \quad Bel(x) = \prod_x p(z | x) Bel(x)

10/10/14
- Review from Homework #7
 - \(H = -kp \dot{x} - k_d x \)
 - \(N \frac{k_d}{s} (m) \frac{k_p}{s} (m/s) \)
 - k_p (m/s)
- LQR [super popular] [Building blocks]
 - Matrices
 - A, B, Q, R
 - Pick time
 - N to +
 - Out comes optimal gains to apply
Lab 4
- Test code one test at a time, not everything at once
- Parameter tuning
- Start slow, then ramp up speed
- Timing to shave robot
- Charge the robot! \(^3\) (laptop?)

Bayes' filter cont'd
- Motion model
 \[P(x'|x, u) \]
 Example: \(x \in \{1, 2, 3, \ldots, 20\} \)
 \(u = 1 \)
- Measurement model
 \[P(z|x) \]
 \(P(\text{triggered} | \text{door}) = 95\% \)
 \(P(\text{no trigger} | \text{door}) = 5\% \)
 \(P(\text{trigger} | \text{no door}) = 10\% \)
 \(P(\text{no trigger} | \text{no door}) = 90\% \)

Random sampling
- Suppose I have a function \(\text{rand()} \) which returns an integer from 0 to a large \(\text{rand-\max} \) with equal probability.
- How can I use \(\text{rand()} \) to implement \(\text{rand()} \) which returns a floating point number uniformly distributed in \([0, 1)\)?

Python:
```python
def rand():
    return float(rand()) / (rand_max)
```

Assume I have an " unfair" coin with:
- \(p(\text{heads}) = .7 \)
- \(p(\text{tails}) = .3 \)

How can I use \(\text{rand()} \) to implement \(\text{uniform-}\text{flip} \)?
def unfair_flip():
 if random() > 0.3
 return 'heads'
 else:
 return 'tails'

Now do the same with an unfair_die_roll() with

\[P(X) \]

\[x = 1, 2, 3, 4, 5, 6 \]

def unfair_die_roll(): → linear search \Oh(n)
 p = fair()
 if p < 1.0/21 // 1
 return 1
 elif p < 3.0/21 // 1+2
 return 2
 elif p < 9.0/21 // 1+2+3
 return 3

\[\frac{1}{21}, \frac{3}{21}, \frac{6}{21}, \frac{10}{21}, \frac{15}{21}, \frac{21}{21} \] → binary search runtime \Oh(\log n)

find smallest element \geq p

Continuous Probability Distributions

Discrete
\[x \in X \ (finite \ set) \]
\[0 \leq p(x) \leq 1 \]
\[\sum_x p(x) = 1 \]

Continuous
\[x \in \mathbb{R} \]
\[p(x) \geq 0 \]
\[\int_{-\infty}^{\infty} p(x)dx = 1 \]
Example: uniform distribution on $[0,1)$

$$p(x) = \begin{cases} 1 & x \in [0,1) \\ 0 & \text{otherwise} \end{cases}$$

Is $P(0,1,2,3,4,5,6,7,8)$ a probability distribution function? Explain:

Probability that $x \in [a,b]$ is

$$\int_a^b p(x) \, dx$$