1. Projection matrix to intrinsic and extrinsic parameters.

Answer the following, providing citations to any sources you consult:

a. What is the RQ factorization (also known as the RQ decomposition)\(^1\) of a matrix A, and how can it help us recover the intrinsic and extrinsic parameters of a camera calibration matrix $M = [\begin{bmatrix} A & b \end{bmatrix}$?

b. Why is the standard notation for the RQ factorization especially horrible in this context?

2. Representing 3D rotations.

Although we can represent every rotation in 3D as a 3×3 matrix, 3D rotations only have three degrees of freedom. There are therefore several alternative parameterizations of 3D rotations, aside from the matrix representation.

- **Euler angles** encode rotations as a triplet of angles to rotate around a sequence of known axes. For instance, the roll-pitch-yaw convention rotates first around the x axis (roll), next about the y axis (pitch), and finally about the z axis (yaw).

- **Unit quaternions** are an extension of the concept of complex numbers into higher dimensions. Just as a single complex number $(a + bi)$ with unit magnitude can represent a rotation in the plane, a unit quaternion $(a + bi + cj + dk)$ can represent rotations in space, given the appropriate multiplicative identities defined on i, j, and k.

- **Rotation vectors** are a compact way to encode rotations based on the fact that any 3D rotation can be represented as a finite rotation of some angle α about a particular axis a, with $\|a\| = 1$. The corresponding 3×1 rotation vector r is then simply given by $r = \alpha a$.

\(^1\)Note: the RQ factorization is related to – but distinct from – the QR factorization.
Read section 2.1.4 of the book, and flip through up to about page 22 of the Diebel paper on the course website. Then, answer the following questions:

a. For each of the four parameterizations mentioned above (matrices, Euler angles, unit quaternions, rotation vectors), explain what the constraints on the representation are. A constraint is any property that prevents some sets of numbers from representing valid rotations for a particular parameterization.

To get you started: even though a rotation matrix has nine elements, it is not the case that any nine numbers form a valid rotation matrix. What must be true about a matrix R in order for it to be a valid rotation matrix?

b. In which parameterizations can we easily compute compositions of rotations – the rotation resulting from applying two arbitrary rotations in sequence?

c. What is gimbal lock, and why is it undesirable?