1. Design a combinational Verilog module

 module majority(A, Y);

that takes a 3-bit input A and outputs a single bit Y which is equal to 1 if and only the majority of the input bits are 1’s. You should also design a test bench to test your module on the binary equivalents of the decimal inputs $A = 0$ to $A = 7$. Submit printouts of your majority module code, the test bench code, and a waveform plot of a successful test run.

2. Use the axioms and theorems of Boolean algebra to prove several identities involving the NAND function. Please show that for any binary value a:

 a. $a \text{ NAND } 0 = (a0)' = 1$
 b. $a \text{ NAND } 1 = (a1)' = a'$
 c. $a \text{ NAND } a = (aa)' = a'$
 d. $a \text{ NAND } a' = (aa')' = 1$

3. We will show using Boolean algebra that the positive edge triggered D flip-flop from the handout only changes the output Q to the value of the input D when the clock changes from 0 to 1. We will start with the circuit in the state listed at $t = 0$ below.

 \[
 \begin{array}{cccccccc}
 C \text{lk} & D & X & Y & S & R & Q & Q' \\
 \hline
 t = 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
 t = 10 & 0 & [a] & 0 & 1 & 1 & 1 & 0 & 1 \\
 & 0 & a & 0 & [a'] & 1 & 1 & 0 & 1 \\
 \end{array}
 \]

 a. At $t = 10$, change D to the value a, and show that Q remains the same. Propagate the changes throughout the circuit like we did on the board in class until all variables converge, and then indicate convergence with a checkmark and a separating horizontal line. You will need to use the NAND identities from the previous problem. The first step has been done for you.
 b. At $t = 20$, change $C\text{lk}$ to 1, and show that Q takes on the value a soon after.
 c. At $t = 30$, change D to a' and show that Q remains unaffected.
4. We can construct state machines like the ones in Worksheet 2 by writing down a truth table for the state transition function. The inputs to the state transition function are the state variables S_i, and the outputs are the “next state” variables N_i. From there, we can use K-maps to produce simplified Boolean expressions for each output, and then implement them using gates.

Produce diagrams for these state machines:

a. Using two D flip-flops and any additional gates necessary, construct a state machine that progresses from the state 00 to 01, 10, and finally to 11. Once in the state 11, your state machine should stay there indefinitely.

b. Using three D flip-flops and any additional gates necessary, construct a state machine that progresses through all of the three-bit Gray codes, starting with 000 and continuing through 100 before starting over.