ENGINEERING 75 ELECTROMAGNETIC FIELD THEORY ASSIGNMENT 1

Due: 9.6.04 page 1/2

Review of Taylor Series, Complex Arithmetic, Vector Arithmetic, and Vector Calculus

- 1. Find the following; parts a-c are unrelated.
- a. Show that $\sqrt{1+2x}\approx 1+x$, and find an approximation for $\sqrt{\frac{1}{1+2x}}$.
- b. Plot the roots of $\sqrt[3]{1+j2}$ in the complex plane. Express the roots in both rectangular and polar form.
- c. What is $\text{Re}\left\{e^{j\frac{\pi}{4}}\frac{(2+j)}{(1+j2)}\right\}$?
- 2. Find the following.
- i. If \hat{x} is a unit vector in the x-direction, compute the following when

$$\vec{A} = 2\hat{x} + \hat{y} - \hat{z}$$
 and $\vec{B} = \hat{x} - \hat{y} + \hat{z}$.

- a. What is the angle between the two vectors **A** and **B**?
- b. Find a unit vector that is perpendicular to the two vectors \mathbf{A} and \mathbf{B} .
- ii. If $\bar{C} = 3xy\hat{x} + 2z\hat{y} 4z\hat{z}$, find the following. (My apologies the symbol ∇ is intended to be the "del" operator, but my computer is having a problem with its fonts ...)
- c. What is $\nabla \cdot \vec{C}$?
- d. What is $\nabla \times \vec{C}$?
- e. Would you encounter difficulties in computing $\nabla \vec{C}$ or $\nabla^2 \vec{C}$? Compute if possible, and if not, explain the difficulty.

ENGINEERING 75 ELECTROMAGNETIC FIELD THEORY ASSIGNMENT 1

3. A general right-handed curvilinear coordinate system is described by the variables (u, v, w), where $\hat{u} \times \hat{v} = \hat{w}$. Since the incremental coordinate quantities du, dv, and dw do not necessarily have units of length (for example, in polar coordinates, d ϕ does not have units of length, but rd ϕ does), the differential length elements must be multiplied by coefficients that generally are a function of u, v, and w:

$$d\ell_{\,\scriptscriptstyle u} = h_{\,\scriptscriptstyle u} du, \quad d\ell_{\,\scriptscriptstyle v} = h_{\,\scriptscriptstyle v} dv, \quad \text{and} \quad d\ell_{\,\scriptscriptstyle w} = h_{\,\scriptscriptstyle w} dw.$$

- a. What are the h_{u} , h_{v} , h_{w} coefficients for the Cartesian, cylindrical, and spherical coordinate systems?
- b. Using the definition of the gradient, find $\nabla \Phi$ (u, v, w) for an arbitrary scalar function Φ .
- c. What is the area of each surface and the volume of a differential size volume element in the $(u,\,v,\,w)$ space?
- d. Using the definitions of curl and divergence, find the curl and divergence of the following arbitrary vector.

$$\vec{A} = A_u \hat{u} + A_v \hat{v} + A_w \hat{w}.$$

e. What is the scalar Laplacian of Φ ?

$$\nabla^2 \Phi = \nabla (\nabla \Phi)$$
?

(Hint: solutions for parts b-e can be checked using known solutions in cylindrical or spherical coordinates.)