E91

Interrupts, Low Power Modes and Timer A

MSP430FG46191QZWR

—> Member of the 430 MCU Platform
=) \Mixed Signal Processor (XMS=Experimental silicon)

I—}Dptiﬂnal: R=Tape & Reel
Package

Temp range (I =-40to0 85, T = -40 to 105 C)
= Family (Memory size & peripherals configuration)
=—3-Series of similar function

=—»(Generation (1xx, 2xx, 3xX, 4XX, 5xx)

L)'~li}|:)tii::=n:-.1|: End Equipment Optimized (G=Medical, E=E-Meter)
=3 Memory Type (F=Flash, C=ROM, P=0TP)

Interrupts

(Chapter 6 In text)

A computer has 2 basic ways to react to inputs:

1

2)

polling: The processor regularly looks at the input and
reacts as appropriate.
+ easy to implement and debug

- processor intensive

« if event is rare, you waste a lot of time checking

e processor can’t go into low power (slow or stopped) modes
Interrupts: The processor is “interrupted” by an event.

+ very efficient time-wise: no time wasted looking for an event
that hasn’t occurred.

+ very efficient energy-wise: processor can be asleep most of the
time.

- can be hard to debug

Polling vs Interrupt

This program sets P1.0 based on
state of P1.4.

#include <msp430x20x3.h>

void main(void)

{
WDTCTL=WDTPW+WDTHOLD; // Stop watchdog
PIDIR = 0x01; // P1.0 output
P10OUT = O0x10; // P1.4 hi (pullup)
P1IREN |= 0Ox10; // P1.4 pullup
while (1) {
// Test P1.4
if (0x10 & P1IN) P10UT |= Ox01;
else P1OUT &= ~0x01;
by
¥

This program toggles P1.0 on each push
of P1.4.

#include <msp430x20x3.h>

void main(void) {
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog

PIDIR = 0x01; // P1.0 output
P10OUT = O0Ox10; // P1.4 hi (pullup)
P1IREN |= 0Ox10; // P1.4 pullup
P1I1E |= Ox10; // P1.4 1IRQ enabled
P11ES |= 0x10; // P1.4 Hi/lo edge
P1IFG &= ~0x10; // P1.4 1IFG cleared

_BIS_SR(LPM4_bits + GIE); // Enter LPM4
¥

// Port 1 interrupt service routine
#pragma vector=PORT1_VECTOR
__interrupt void Port_1(void) {
P10OUT ~= 0x01; // P1.0 = toggle
P1LIFG &= ~0x10; // P1.4 1FG cleared
¥

The details are not important now, we will come back to the interrupt version

later and go over it line-by-line, bit-by-bit.

What happens on interrupt?

Interrupt Acceptance
The interrupt latency is 6 cycles (CPU), from the acceptance of an interrupt request to the start of
execution of the interrupt-service routine. The interrupt logic executes the following:

1.

2.
3.
4

Any currently executing instruction is completed.

The PC, which points to the next instruction, is pushed onto the stack.

The SR is pushed onto the stack.

The interrupt with the highest priority is selected if multiple interrupts occurred during the last
instruction and are pending for service.

The interrupt request flag resets automatically on single-source flags. Multiple source flags
remain set for servicing by software.

The SR is cleared. This terminates any low-power mode. Because the GIE bit is cleared, further
interrupts are disabled.

The content of the interrupt vector is loaded into the PC: the program continues with the
interrupt service routine at that address.

Return From Interrupt
The interrupt handling routine terminates with instruction: RETI (return from ISR)

The return from the interrupt takes 5 cycles (CPU) or 3 cycles (CPUx) to execute the following actions.

1.

2.

The SR with all previous settings pops from the stack. All previous settings of GIE, CPUOFF, etc.
are now in effect, regardless of the settings used during the interrupt service routine.
The PC pops from the stack and begins execution at the point where it was interrupted.

SP —»

Before
Interrupt

ltem1

ltem2

After
Interrupt

ltem1

ltem2

PC

SP —»

SR

SP —»

TOS

TOS

ltem1

ltem2

PC

SR

TOS

Low power modes

Figure 2-8. Typical Current Consumption of 21x1 Devices vs Operating Modes

300
315 —
n 270 -
L
= 205 1 T Ve =3V
S 180+ T~ = VCC ooy
< 13t . W Vec=2
3 st T
- 45 A
0 711 | 0907 0101
AM LPMO LPM2 LPM3 LPM4
Operating Modes
SCG1 SCGO0 OSCOFF CPUOFF Mode CPU and Clocks Status
0 0 0 Active CPU is active, all enabled clocks are active
0 0 1 LPMO CPU, MCLK are disabled
SMCLK , ACLK are active
0 1 0 1 LPMA CPU, MCLK are disabled, DCO and DC generator
are disabled if the DCO is not used for SMCLE.
ACLK is active
1 0 0 1 LPM2 CPU, MCLK, SMCLE, DCO are disabled
DC generator remains enabled
ACLK is aclive
1 1 0 1 LPM3 CPU, MCLK, SMCLE, DCO are disabled
DC generator disabled
ACLK is active
1 1 1 1 LPM4 CPU and all clocks disabled
15 9 B 7 0
OSsC|CPU
Reserved V| SCG1 | SCGO OFE |OFF GE|N|Z|C

Getting into and out of LPM

An enabled interrupt event wakes the MSP430 from any of the low-power
operating modes. The program flow is:

3 Enter interrupt service routine:

m The PC and SR are stored on the stack
B The CPUOFF, SCG1, and OSCOFF bits are automatically reset

1 Options for returning from the interrupt service routine:

B The original SR is popped from the stack, restoring the previous
operating mode.

B The SR bits stored on the stack can be modified within the interrupt
service routine retuming to a different operating mode when the RETI
instruction is executed.

15 9 B 7 0

Reserved v|scar | sceo | O aie| N | z|c

Getting into and out of LPM

0SC
OFF

CPU

v OFF

Reserved SCG1 | SCGO

GE|N|Z|C

w0

ASM Example

; Enter LPMO Example
BIS #GIE+CPUQFF, SR
; Program stops here

; Exit LPMO Interrupt Service Routine
BIC #CPUCFF, 0 (SP) ; Exit LPMO on RETI
RETI

. Enter Lomo ér",,—,__——,————————————————,

.

In main routine
(enter LPM mode)

In ISR (exit LPM when
returning to main program).

Using C

__bis SR register(CPUOFF + GIE);
// .

// ADC10 interrupt service routine
#pragma vector=ADC10_VECTOR
__interrupt void ADC10 _ISR(void) {

__bic_SR _register_on_exit(CPUOFF);
¥

In main routine
(enter LPM mode)

// LPMO, ADC10 ISR will force exit

In ISR (exit LPM when
returning to main program).

// Clear CPUOFF bit from O(SR)

_bis_SR _register(unsigned short mask);

//BIS mask, SR

_bic_SR_register_on_exit(unsigned short mask);

//BIC mask, saved SR

Registers that effect interrupts on P1

Interrupt Flag P1IFG 023h Read/write Reset with PUC
Interrupt Edge Select P1IES 024h Read/write Unchanged
Interrupt Enable P1IE 025h Read/write Reset with PUC

If a bit in PIES=0, the corresponding bit in P1IFG is set on rising edge on corresponding
input pin (P1IN). If PIES=1, P1IFG is set on falling edge.

If PIES=1, P1IFG is set on falling edge of P1IN.

If interrupt enable bit is set in (P1IE), and Global Interrupts are enabled (GIE in Status
Register), an interrupt is requested when the corresponding interrupt flag is set (P1IFG).

Note: Writing to PxXIESx
Writing to P1IES, or P2IES can result in setting the corresponding interrupt

flags.
PxIESx PxINx PxIFGx
0—1 0 May be set
0—1 1 Unchanged
1 =0 0 Unchanged
1 =0 1 May be set

Using interrupts on Port 1

Toggles P1.0 on each push of P1.4.

void main(void) {
WDTCTL = WDTPW + WDTHOLD;

}

// Port 1 interrupt service routine
#pragma vector=PORT1_VECTOR
__1nterrupt void Port_1(void)

N

}

P1REN |= 0Ox10;
P1IE |= Ox10;

P11ES |= 0x10;
P1IFG &= ~0x10;

_BIS_SR(LPM4_bits + GIE);

P1OUT ~=
PLIFG &=

//
//
//
//
//
//
//

//

Stop
P1.
P1.
P1.
P1.
P1.
P1.

Enter

A A)

watchdqg////////
output

hi (pullu

pul lup

IRQ enabled «—_

Hi/lo edge
IFG cleared

N

LPM4$§\\\\\\\\\

P1.0 is output

P1.4 resistor is enabled

P1.4 resistor is connected to logic 1

Enable interrupt on P1.4 (GIE is still
cleared)

Set sensitivity to falling edge.

Clear Interrupt flag (just in case).

Enter LPM4 and enable interrupts

Tell compiler to fill in interrupt vector
with address of this function

Tell compiler to return from function
with “iret” (as opposed to “ret”)

Toggle P1.0

Clear interrupt flag. (Some interrupts do this
automatically, check manual, or example code)

Keep ISR’s short!

It is important to keep interrupt service routines short. Since interrupts are disable globally
during an ISR, you might miss something important.

If you need to do a lot of processing, have the ISR set a flag, and have main routine act on it.

main() s ISRs
[~_ -
'f Beqi ™ H .//Interrupt EEI"-'iDE\ /f Interrupt BEwicE\
egin | 1 f . Vo . \
' I-. Routine #1 Routine #2 J|
— H A .)
: \IE‘I_D-EFIDdII: WEKEL:IEII]:/ (EEFIDhEI’ﬂ generat_e_lii}/
Y H v
Intialize /O : Set flag 1 Set flag 2
ports, peripheral '
modules, and ' ¥ Y
variables ' Modify SR contents Modify SR contents
" on the stack, to on the stack, to
: keep CPU awake keap CPU awake
Y 1 after return after return
]
1 i i
Enter sleep H _ ~
- mode (LPMn) : I./ Retum from ‘\II ,.’/_ Return from \I
1 ! inte rrupt interrupt
- . RN A
'
A i
PN Execute
o . 1
< flag 1set? S f'f”“: p| flag 1 :
T ag_ handler :
M n
e Execut :
T e Y xecute
< flag_2 set?] f'fm; »| flag 2 H
T 2l handler ']
]
) :
e H"“*u ¥ Clear Execute 1
= flag_n set? =>—m= flaa n » flag n :
T 20 handler i
M 1
]
1

Figure 1. M5P430 Top-Level Code Flow

C > ASM

void main(void) {

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog
PIDIR = 0x01; // P1.0 output
P10UT = 0x10; /7 P1.4 hi (pullup)
PIREN |= 0x10; /7 P1.4 pullup

P1IE |= 0x10; // P1.4 IRQ enabled
P1IES |= 0x10; // P1.4 Hi/lo edge
P1IFG &= ~0x10; // P1.4 IFG cleared

_BIS_SR(LPM4_bits + GIE); // Enter LPM4

}

// Port 1 interrupt service routine

#pragma vector=PORT1_VECTOR

__interrupt void Port_1(void) {
P10UT ~= 0x01; // P1.0 = toggle
P1IFG &= ~0x10;

// P1.4 1FG cleared

Memory location FFE4,FFE5
contains F84C (the location
of the interrupt routine)

Memory location FFFE,FFFF
contains F82E (the location
of the interrupt routine)

}

OxF800: 40B2 5A80 0120 MOV.W #0x5a80,&Watchdog_Timer WDTCTL
OxF806: 43D2 0022 MOV.B #1,&Port_1 2 PI1DIR
OxF80A: 40F2 0010 0021 MOV.B #0x0010,&Port_1 2 P10OUT
OxF810: DOF2 0010 0027 BIS.B #0x0010,&Port_1 2 P1REN
OxF816: DOF2 0010 0025 BIS.B #0x0010,&Port_1 2 P1IE
OxF81C: DOF2 0010 0024 BIS.B #0x0010,&Port_1 2 P1IES
OxF822: FOF2 OOEF 0023 AND.B #0x00ef,&Port_1 2 P1IFG
OxF828: D032 OOF8 BIS.W #0x00f8,ST
OxF82C: 4130 RET

c_iInt00, _c _int00_noinit _noexit:
OxF82E: 4031 027E MOV.W #0x027e,SP
OxrosZ: 40B 860 0200

Port_1:
OxF84C: 3D2 0021 XOR.B HE5&P —2 P10UT
Ox+850: FOF2 OOEF 0023 AND.B #0x00etT,&Pert 1 2 P1IFG
OxF856: 1300 RETI

(other stuff)
OxFFDE: FFFF FIT &= AND.B @R15+,0xFFFF(R15)
OxFFE2: FFFF F84C AND.B @R15+,0xf84c(R15)
OXFFE6: FFFF Frrr AND.B @R15+,0xfF R
(otherstu

OxXFFFA: FFFF FFFF AND-B @R15+,0xFFFF(R15)

resct vector:
OXFFFE: F82E AND.W @R8,R14

interrupt vector addresses

The interrupt vectors and the power-up starting address are located in the address range of OFFFFh-0FFCOh.

The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.

If the reset vector (located at address OFFFEh) contains OFFFFh (e.g., flash is not programmed) the CPU will

go into LPM4 immediately after power-up.

INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT | WORD ADDRESS PRIORITY
Power-up PORIFG
External reset RSTIFG
{ dog Timer+ WDTIFG Reseat OFFFEh 31, highest
1 key violation KEYW
BC out-of-range (seae Maore 1) {see Note 2)
I rg"'lll:fg {non)-maskable,
Oscillator fault {non)-maskable, OFFFCh 30
Flash memory access violation ACCVIFG (non)-maskable
(see Notes 2 and 4)
OFFFAR 29
OFFF8h 28
Comparator_A+ (MSP430x20x1 anly) CAIFG (see MNote 3) maskable OFFFEh 27
Waitchdog Timer+ WDTIFG maskable OFFF4h 26
Timer_A2 TACCRO CCIFG (see Note 3) maskable OFFF2h 25
TACCR1 GCIFG.
Timer_A2 TAIFG (see Notes 2 and 3) maskable OFFFOh 24
OFFEEh 23
OFFECh 22
ADCA0 (MSP430x20x2 only) ADCA0IFG (see Note 3) maskable
SDA6CCTLO SDHE0OVIFG, OFFEAh 29
SD16_A (MSP430x20x3 only) SD16CCTLO SD16IFG maskable
(see Notes 2 and 3)
sl USIFG, USISTTIFG
(MSP430x20x2, MSP430x20x3 only) (see Notes 2 and 3) maskable OFFEEN 20
I/O Port P2 P2IFG.6 to P2IFG.7
(two flags) (see Notes 2 and 3) maskable OFFESh 19
/O Port P1 P1IFG.0 to P1IFG.7 . L
(eight flags) (see Notes 2 and 3) maskable sl 18
OFFEZ2h 17
OFFEOQh 16
(see Mote 5) OFFDEhR ... OFFCOh 15 ... O, lowest

Aresells generared If the GFLU res 10 Te1ch Instructons rom within the module registier memaory address range (0n-01FFh) or rom

within unused address ranges.

2. Multiple source ‘lags

3.

1.

NOTES:

Interrupt flags are located in the module

4. (nonj-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.

tors at addresses OFFDE to OFFCOh are not used in this device and can be used for regular program code if

5. The interrupt ve

necessary.

i TASSELxX
|

TACLK 00

i ACLK 01
SMCLK —| 10

! INCLK 11

CCI2A
CCI2B
GMND
VCC

TIMER A
(very similar to TIMER B)

(Chapter 8 in text)

Timer Clock Timer Block i
D% MCx
i I & e It |
. 16-bit Timer
Divider — Count
1/2/4/8 - TAR] Wioge [EQUO
Clear RC |
i I—b Set TAIF
TACLR
CMx

I

Capture
Mode

Timer Clock

TACCRZ2

V.

Comparator 2

Heset

i EQUZ | o

i

1 A

! SCClm— Y I
| EN 0 Set TACCR2 |
: 1 CCIFG

i 1
: ouT — i
i Output e |
| Unit2 D =&l ole— OUTZ Signal i
| EQUO — Timer Clock —> !
i i

T

OUTMODx

B

Timer A
Timer / Counter

Note interrupt flags

Capture Compare Registers
(2013 only has
CCRO and CCR1)

Timer / Counter

Timer Clock

TASSELx Dx

TACLK —
ACLK —
SMCLK —
INCLE —

MCx
I s 0 T
00 Divider 15‘%';;”“” — count | ¢ o
01 1/2/4/8 —] Mode
Clear RC

10 |
11 {‘ P Set TAIFG

__

The timer register (TAR) can be read and written
and can generate an interrupt on overflow.
It can be cleared with TACLR.

TASSELA selects on of four inputs
IDA chooses one of four divider
MCA chooses one of four counting modes

See previous page
for definition

MCx Mode Description
00 Stop The timer is halted.
01 Up The timer repeatedly counts from zero o the value of
TACCRO.
10 Continuous The fimer repeatedly counts from zero to OFFFFh.
11 Up/down The timer repeatedly counts from zero up to the value of

TACCRO and back down to zero.

TIMER A Registers

Table 12-3. Timer_A Registers

Register Short Form Register Type Address Initial State
Timer_A control TACTL Read/write 0160h Reset with POR
Timer_A counter TAR Read/write 0170h Reset with POR
Timer_A capture/compare control O TACCTLO Head/write 0162h Heset with POR
Timer_A capture/compare 0 TACCRO Read/write 0172h Reset with POR
Timer_A captura/compare control 1 TACCTLA Read/write 0164h Reset with POR
Timer_A captura/compare 1 TACCR1 Read/write 0174h Reset with POR
TACTL, Timer_A Control Register
15 14 13 12 11 10 9 8
Unused TASSELx
rw—(0) rw—(0) rw—(0) w—(0) rw—(0) rw—(0) rw—(0) w—(0)
7 6 5 4 3 2 1 0
IDx MCx Unused TACLR TAIE TAIFG
rw—(0) w—(0) w—(0) rw—(0) w—(0) w—{0) w—{0) w—(0)

If we wanted to use TAIFG for a periodic interrupt, the ISR would have to set
the value of TAR to Oxffff-(desired delay count — 1).

Capture Mode

CCR2
CClSx CMx
CCI2A Capture ﬂ
ccizs Mode i 0
TACCR2 i
! GND Timer Clock |
i VCC {} E
i p Comparator 2 i
! 1
i EQUZ2 CAP E
! i
! n :
. SCClm—Y i
| EN 0 Set TACCRZ |
: 1 CCIFG :
| |

ouT
L. Output D

D Set ql-e—p OUTZ Signal

Timer Clock —>

Capture mode (CAP=1) is used to time events on CCIxA or CCIxB (where x is the CCR register).

On a rising edge, falling edge, or both (as determined by CMx) the value of TAR is copied into
TACCRX, and the CCIFG flag is set.

CCISx CMx @_.
Compare Mode .. ¢ =1 — |
CCI2B 01 Mode + 15 0
GND 10 Timer Clock B 4" TACCR2 I
Compare Mode used to generate periodic R _ {}t —
. C cmparator
signals of whose frequency and duty cycles can J 2 =TI
be altered. ol
- | e
Exact behavior is set by bit EQUx and OUTMODx. e
y Q L. o~ our 4D _SLT |
EQUD —J» Unit2 mer Clock D) 1O P OUTZ Signal
As one example: %@D
* TAR counts to TACCRO and resets (i.e., OUTHIODx _.CE)EDJ

TACCRO determines frequency (along with TAR input frequency))
e Output OUT1 is high when TAR>TACCRL1 (i.e., TACCR1 determines pulse width)

OFFFFh
TACCRO
TACCR*
Oh
""""""""" Output Mode 3: Set/Reset
EQUD EQU1 EQUD FEQU1 EQUOD

TAIFG TAIFG TAIFG Interrupt Events

Table 12-2. Output Modes

PWM

If you need PWM, you need to choose the mode you need:

OUTMODx

Mode

Description

000

001

10

011

100

101

110

11

Output

Set

Toggle/Reset

Set/Reset

Toggle

Reseat

Toggle/Set

Reset/Set

The output signal OUTx is defined by the
OUTX bit. The OUTx signal updates
immediately when OUTx is updated.

The output is set when the timer counts
to the TACCRx value. It remains set until
a reset of the timer, or until another
output mode is selected and affects the
output.

The output is toggled when the timer
counts to the TACCRx value. It is reset
when the timer counts to the TACCRO
value.

The output is set when the timer counts
to the TACCRx value. It is reset when the
timer counts to the TACCRO value.

The output is toggled when the timer
counts to the TACCRx value. The output
period is double the timer period.

The output is reset when the timer counts
to the TACCRx value. It remains reset
until another output mode is selected and
affects the output.

The output is toggled when the timer
counts to the TACCRY value. It is set
when the timer counts to the TACCRO
value.

The output is reset when the timer counts
to the TACCRx value. It is set when the
timer counts to the TACCRO value.

Timer B

13.1.1 Similarities and Differences From Timer_ A

Timer_B is identical to Timer_A with the following exceptions:

3 The length of Timer_B is programmable to be 8, 10, 12, or 16 bits.
3 Timer_B TBCCRx reqisters are double-buffered and can be grouped.
3 All Timer_B outputs can be put into a high-impedance state.

3 The SCCI bit function is not implemented in Timer_B.

Grouping is important when PWM'’s must be synchronized (as with
H-bridges — but don’t worry if you don’t know what an H-bridge is).

References Used

http://focus.ti.com/lit/an/slaa294a/slaa294a.pdf MSP430 Software Coding Techniques
http://focus.ti.com/mcu/docs/mcuprodcodeexamples.tsp?sectionld=96&tabld=1468 MSP430 example code
http://focus.ti.com/lit/ug/slaul32e/slaul32e.pdf MSP430 Optimizing C/C++ Compiler v 3.3

