Interval exchange transformations from tiling billiards

Diana Davis
Swarthmore College
1 January 2018

Joint work with:
Kelsey DiPietro
Jenny Rustad
Alex St Laurent
Paul Baird-Smith
Elijah Fromm
Sumun Iyer
Pat Hooper
Elijah Fromm, Sumun Iyer and Paul Baird-Smith
in the SMALL REU at Williams College
Conjecture:
Enclosed vertices & edges form a tree

Theorem:
Any trajectory enclosing a tree has period $4n+2$
Start with triangle and trajectory
Add circumscribing circle
Flip: angles CCW
Rotate: head to 0
Flip: angles CCW
Rotate: head to 0
Next triangle!
Fold so trajectory matches
Flip: angles CCW
Rotate: head to 0

\[X' = \tau - 2\gamma - X \]
Our Interval Exchange Transformation (IET) is defined by:

\[X' = \begin{cases}
\tau + 2\beta - X & \text{if } 0 < X < 2\beta \\
\tau + 2\beta - 2\gamma - X & \text{if } 2\beta < X < 2\beta + 2\gamma \\
\tau - 2\gamma - X & \text{if } 2\beta + 2\gamma < X < 2\pi
\end{cases} \]

\[X' = \tau - 2\gamma - X \]

… an orientation-reversing IET.
Tiling billiards IET

Interval **lengths**: angles

Shifts: angles & trajectory

Starting **point**: orientation of triangle
A short advertisement for flipped IETs

Everything is flipped periodic, every point is stable, periods of form 4n+2
Comparison to non-flipped IETs

If $|AB|$ and $|C|$ are irrationally related, every point is aperiodic.
Comparison to non-flipped IETs

If $|AB|$ and $|C|$ are irrationally related, every point is aperiodic.
- Switch a&b, c&d, e&f
- Rotate a half turn
Rauzy fractal
from Hooper & Weiss
Trihexagonal tiling collaborator

Pat Hooper (CCNY)
Speaking here on January 15
Glue rhombuses to get an infinite translation surface that is a cover of the torus.
Two types of periodic behavior:

- Periodic directions
- Drift-periodic directions
Theorem: **Periodic** and **drift-periodic** directions are those in the triangle grid.