1. Prove that \(\mathbb{Q} \) under addition is not a cyclic group.

2. Let \(G \) be an abelian group. Prove that the elements of finite order of \(G \) form a subgroup. (This subgroup is called the torsion subgroup of \(G \).)

3. Let \(G \) be a group with \(a, b \in G \).

 a) Let \(m \in \mathbb{Z}^+ \). Prove that if \((ab)^m = e\) then \((ba)^m = e\).

 b) Use part (a) to show that \(ab \) and \(ba \) have the same order. (Don’t forget to consider the case that the order is infinite!)